她应该能够知道,王易在量子计算的提升上对她是有一定限制的。</p>
毕竟量子计算的算力指数加成,配合王易的新公式算法,很容易导致失控。</p>
但经典计算机的算力提升,王易肯定还是不会给她什么制约的。</p>
EUV光刻机,分辨率远远超过了DUV光刻机。</p>
采用的是13.5n波长,已经接近X射线的极紫外线,</p>
理论上已经能达到硅基芯片的极限!</p>
要知道单个的硅原子也就是0.12n,还要考虑电子隧穿效应,所以目前正常的观点中,1n差不多就是硅基芯片的极限了。</p>
当然,当初20n的时候隧穿效应就已经出现,通过结构调整解决的,说不定等到1n工艺后又找到了解决办法。</p>
可即便这样,0.12n的硅原子大小也摆在这里,总不可能把原子分开。</p>
这种情况下,所需要考虑的要么就是通过叠加芯片数目来增加晶体管数,采取新架构和新的方式,要么就要考虑其他材料了。</p>
比如碳基就是一个方向,但碳基有待解决的问题太多了,麻烦还很多。</p>
而除此之外,还有另外一种材料,同等密度下算力能够超过硅基数百倍!</p>
而且因为功耗极低,几乎没有散热问题,可以轻易的集成与立体化叠加,达到理论上同规模下远超硅基上限的效率。</p>
那就是利用约瑟夫森结形成的超导材料。</p>
是,量子计算机也要运用到超导,但超导对计算机的运用可并不单单是量子计算机,传统的超导计算机同样也有着对应结构。</p>
只是因为性价比问题和现在的低温超导材料,目前只是做出过单个的约瑟夫森结来用来测试,并没有尝试过集成。</p>
都知道超导可以看做是无电阻,且具备抗磁力,正常来说超导本身是无法形成半导体的这种特性,但两块超导材料之间加入一块氧化隔层,却是能在一定条件下达到相同的效果!</p>
这,就是约瑟夫森结。</p>
只是正常来说超导材料本身的获得太难了。</p>
绝大多数情况下,超导材料都需要在液氦的低温环境才能有超导特性,好一点的也得是液氮。</p>
不过林诗琴的意思明显是,让王易自己徒手撸出一些常温超导材料来帮她。</p>
“老板,质量投射器的数据演算也已经完成了,要达到最佳的效果,恐怕同样是要加入超导材料最好诶,如果你要用传统超导材料加入液氮甚至液氦制冷循环装置的话,那所需要占据的体积和工程量可是要大大增加的。”</p>
林诗琴笑的好似小狐狸一样。</p>
“行吧,我考虑一下,整理整理思路。”</p>
王易叹了口气,揉了揉额头。</p>
其实超导材料他也动过几次念头,说实话,一小块的常温超导材料,他用魔力硬撸真撸出来过,是一块银铜合金。</p>
可以说就是纯粹不计成本的强撸出来的,显得有些鸡肋。</p>
因为大部分需要超导材料运用的地方,需求的量其实都不少的,就连‘悬铃木’那台某歌的量子计算机使用的超导材料都比这块多的多。</p>
更别说目前主流可控核聚变的托卡马克装置了。</p>
这些都是配合着最少液氮的冷却循环装置拼出来的,部分可能依然还需要使用液氦冷却。</p>
不过林诗琴说的没错,如果要打造出参数里的质量投射器,使用的最佳磁力线圈材料就是超导体。</p>
如果自己不撸出更好用的超导材料,那加装的冷却系统本身都是一个巨大的工程量。</p>
“老板,最近有人利用金刚石对硫化氢加压,在-70度的环境下达到了超导效果,我把相关论文和实验结果找出来了……”</p>
林诗琴听到王易要寻找思路,很是殷勤的把相应的诸多信息都发了过去,这让王易也感到了有些兴趣。</p>
硫化氢?</p>
想要模拟金属氢的特性出来?金刚石加压,的确是很有意思的一个思路。</p>
对方用物理的相关,自己很多地方可以用魔力取代,顺着过去可能还真的能够更简单的达成常温超导的目标……</p>
(注:2020年那个常温超导加压的论文被撤刊了,应该有造假嫌疑,但另外一个实验团队在2015年的-70度的硫化氢超导,还有2019年-23度的氢化镧超导都是有实例的,不过需要用钻石加压到100万到200万个大气压的压力,这种实验产物单论纯物理上的运用恐怕还要很久才能有实际用处,还不如液氮超导方便……)</p>
三更完毕!求订阅~</p>
传统物理解决不了的就魔力解决,科技得慢慢黑起来了……</p>
本章已修改</p>
(本章完)</p>